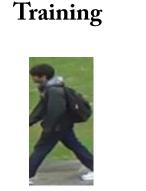


Unsupervised Domain Adaptation Through Synthesis For Person Re-Identification

Suncheng Xiang, Yuzhuo Fu, Guanjie You, Ting Liu

School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University


IEEE International Conference on Multimedia and Expo

6-10 July 2020 || London, United Kingdom || Virtual

Introduction: Domain Adaptation for Person Re-ID

• Performing training and testing in different domains

Source (DukeMTMC-reID)

Different Domain

Testing

Target (Market-1501)

Challenges:

- Small-scale datasets
- Lack of diversity in viewpoint, weather, illumination and pose, etc
- Overfitting due to rare labeled data

dataset		#identity	#box	#cam	view
Real	Market-1501 [4]	1,501	32,668	6	Ν
	CUHK03 [1]	1,467	14,096	2	Ν
	DukeMTMC-reID [3]	1,404	36,411	8	Ν
Synthetic	SOMAset [2]	50	100,000	250	Ν
	SyRI [5]	100	1,680,000	_	Ν
	PersonX [6]	1,266	273,456	6	Y
	GPR	754	443,352	12	Y

Our work (**GPR** dataset)

0°

180°

30°

210°

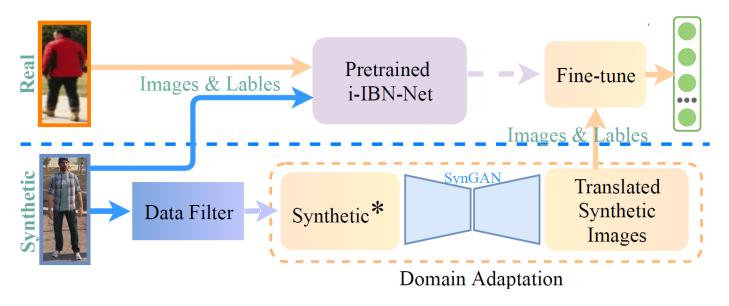
120°

150°

clear clouds foggy neutral blizzard overcast rain

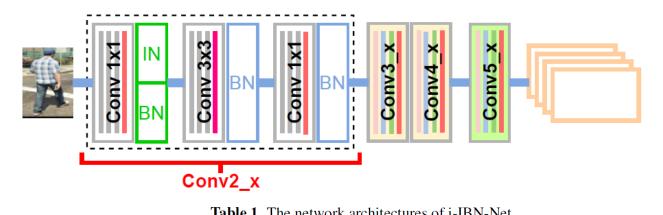
90°

240°


270°

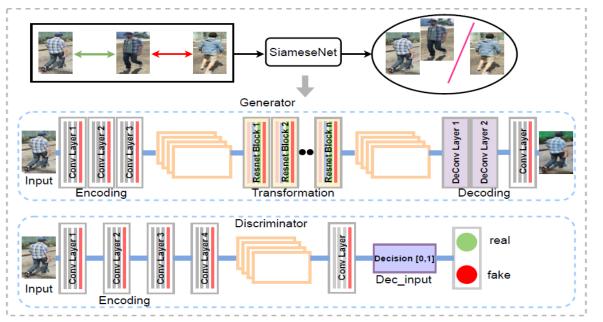
330°

300°


Our work

Domain Adaptation Framework which consists of i-IBN-Net and SynGAN

i-IBN-Net



conv2_x	conv3_x	conv4_x	conv5_x		
$\begin{bmatrix} 1 \times 1, 64 \\ IN, 32 BN, 32 \\ 3 \times 3, 64 \\ BN, 64 \\ 1 \times 1, 256 \\ BN, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 128 \\ IN, 64 BN, 64 \\ 3 \times 3, 128 \\ BN, 128 \\ 1 \times 1, 512 \\ BN, 512 \end{bmatrix} \times 4$	$\left[\begin{array}{c} 1 \times 1,256\\ IN,128 \ BN,128\\ 3 \times 3,256\\ BN,256\\ 1 \times 1,1024\\ BN,1024 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 512 \\ BN, 512 \\ 3 \times 3, 512 \\ BN, 512 \\ 1 \times 1, 2048 \\ BN, 2048 \end{bmatrix} \times 3$		

- Modified based on ResNet-50.
- integrates IN and BN as building blocks to the first three groups of ResNet-50, and leave the fourth group as before without any change.

SynGAN

- Slightly modification based on the CycleGAN (image-image translation)
- Integrate a SiameseNet with CycleGAN (Similarity preserving learning)
- CycleGAN learning mapping function between two domain
- SiameseNet learning a latent space to constrain the mapping function

Visualization

GPR to DukeMTMC-reID

Results

			-	<i>ay</i>						
	Market-1501					DukeMTMC-reID				
Methods	rank-1	rank-5	rank-	10 m	AP	rank-1	rank-5	rank-10	mAP	
state-of-the-art (MAR [12])	67.7	81.9	87.3	3 4	0.0	67.1	79.8	84.2	48.0	
Real	61.8	75.6	80.9) 3	1.2	60.1	74.3	78.2	35.7	
Real+GPR	73.8	86.9	91.1	4	7.1	68.7	80.3	84.1	49.3	
Real+GPR (Fine-tune w/ Target)	76.2	89.2	93.6	5 5	0.8	71-2	82.7	86.8	51.9	
CycleGAN [†]	73.6	86.5	90.7	7 4	6.6	69.1	80.8	84.6	50.5	
CycleGAN+ $\mathcal{L}_{id}^{\dagger}$	75.3	88.1	92.3	3 4	8.2	70.1	81.7	85.8	50.7	
$\text{CycleGAN+}\mathcal{L}_{\text{con}}^{\dagger}$	75.6	88.4	92.5	5 4	8.4	70.3	81.9	86.0	50.8	
$CycleGAN + \mathcal{L}_{id} + \mathcal{L}_{con}^{\dagger} (SynGAN)$	76.1	89.0	93.2	2 4	9.7	70.9	82.4	86.2	51.1	
		.5%	_				.8%			
	Compari	son wit	h exist	ting m	ethoḍ	S				
	N	larket-150)1	Duke	MTMC	-reID				
Methods	rank-1	rank-5	mAP	rank-1	rank-5	mAP				
LOMO [8	[] 27.2	41.6	8.0	12.3	21.3	4.8				
BOW [4]	35.8	52.4	14.8	17.1	28.8	8.3				
PTGAN [1	0] 38.6	57.3	15.7	27.4	43.6	13.5				
SPGAN [9	9] 51.5	70.1	22.8	41.1	56.6	22.3				
HHL [15	62.2	78.8	31.4	46.9	61.0	27.2				
ECN [11]	75.1	87.6	43.0	63.3	75.8	40.4				
MAR [12	-	81.9	40.0	67.1	79.8	48.0				

Ablation study

We can achieve the SOTA results

Conclusion

Contribution:

- Create a large-scale, synthetic and diverse person Re-ID dataset GPR.
- Propose a novel domain adaptation framework to boost the performance for unsupervised Re-ID task. (a phenomenal job)

Future work:

- Focus on Re-ID task via domain adaptation.
- Explore how to extract more effective domain invariant features between synthetic and real-world data.

Shanghai Jiao Tong University