

Deep Unsupervised Progressive Learning for Distant Domain Adaptation

Suncheng Xiang, Yuzhuo Fu, Ting Liu

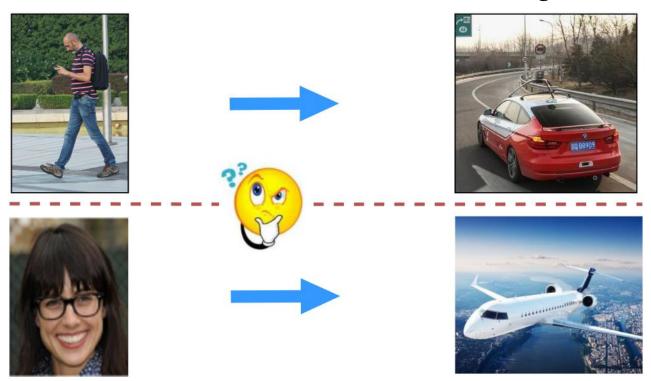
School of Microelectronics Shanghai Jiao Tong University

Introduction: Distant Domain Adaptation

Distant Domain Adaptation: Transfer between two distant domain

e.g. Classify vehicle images with a model trained on pedestrian images

Source



Target

Page . 2

Related Work

Domain Adaptation: Transfer between two close domain (requirement)

e.g. Classify human faces or animals with similar appearance

Source Target

Related Work

Domain Adaptation:

Source domain ~ $P_{s}(X,Y) \neq Target domain ~ P_{T}(Z,H)$

lots of labeled data

unlabeled or limited labels

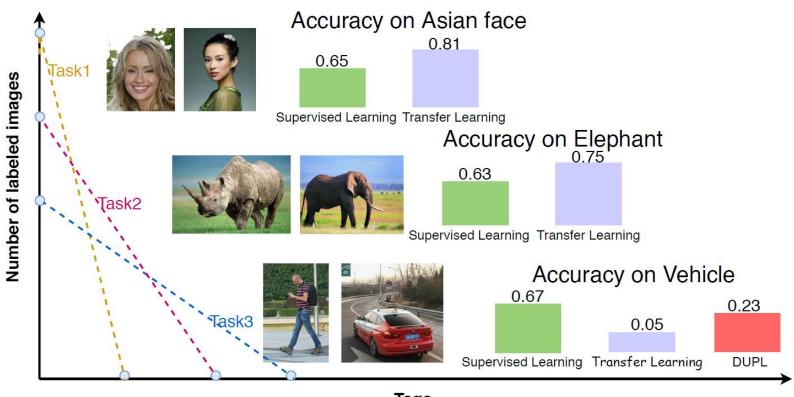
 $D_{S} = \{(x_{i}, y_{i}), \forall i \in \{1, ..., N\}\}$ $D_{T} = \{(z_{i}, ?), \forall j \in \{1, ..., M\}\}$

- > Find a mapping function from source domain to target domain
- > **Domain-invariant** representations can be shared between two domains

Page. 5

Our work

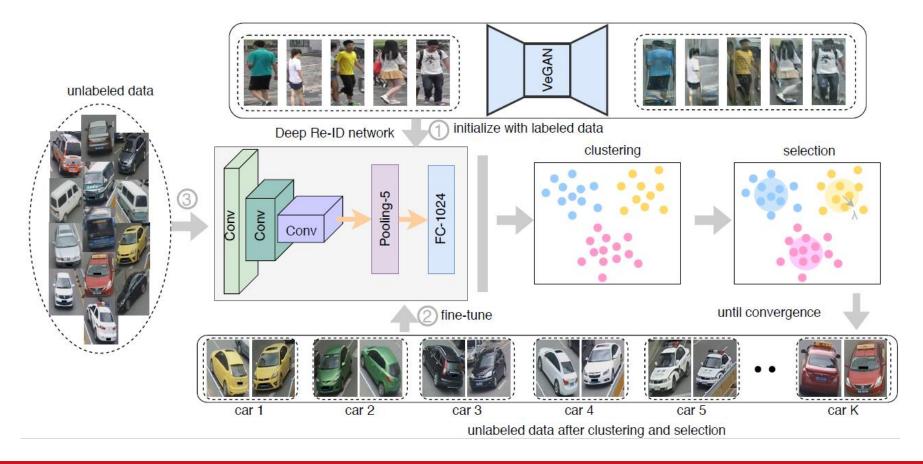
- ✓ Execute an unrelated task based on a labeled dataset training previously
- □ Challenging due to different distribution between source and target domain
- Worse performance than supervised learning



Tags

Solution: DUPL Framework

- Bridge the gap between source and target domain
- Mine the discriminative information (potential label information) in the target domain

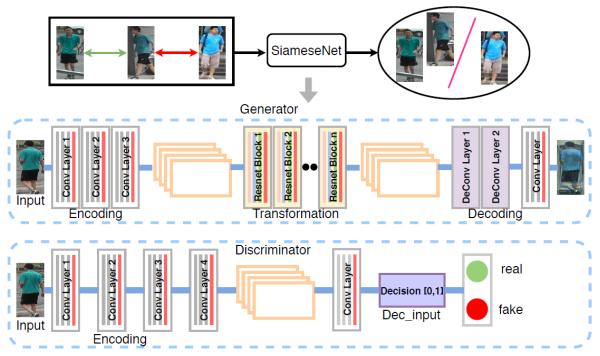


酒菜酒

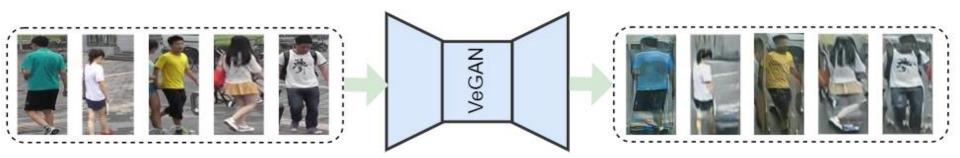
• Slightly modification based on the CycleGAN (image-image translation)

Page. 7

- Integrate a SiameseNet with CycleGAN (Similarity preserving learning)
- CycleGAN \implies learning mapping function between two domain
- SiameseNet i learning a latent space to constrain the mapping function



Solution: VeGAN Model



Objective function of VeGAN

$$\mathcal{L}_{VeGAN} = \mathcal{L}_{cyc} + \beta \mathcal{L}_{ide} + \gamma \mathcal{L}_{con}$$

- β and γ control the relative importance of the identity loss and constraint loss
- Training pairs are constructed in an unsupervised manner without sample annotation
- Training VeGAN until convergence or reaching maximum iterations

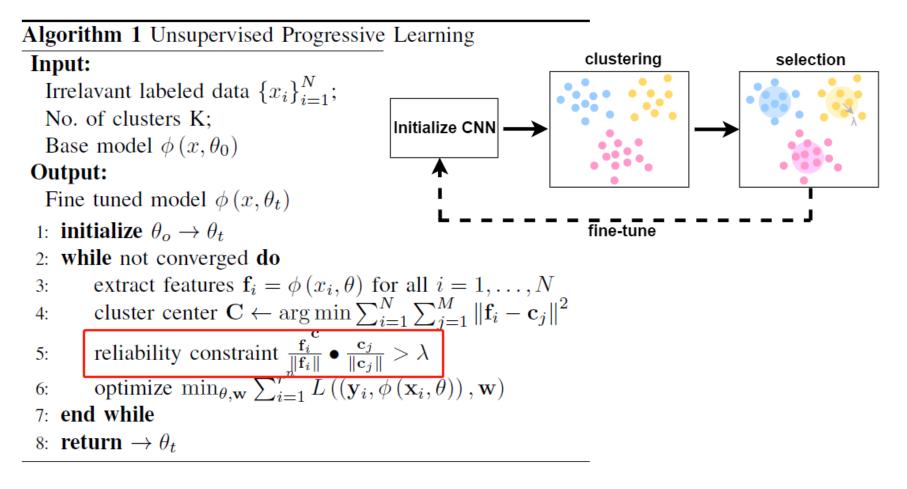
Page . 9

Solution: VeGAN Model

- Some visutal examples with our VeGAN
- Transferred sample has some latent information about target domain

Solution: Unsupervised Progressive Learning

Mine the potential label information in target domain



Experiment Setting

- Training: Duke / Market / CUHK03
- Testing: VeRi dataset (ICME2016)
- VeGAN

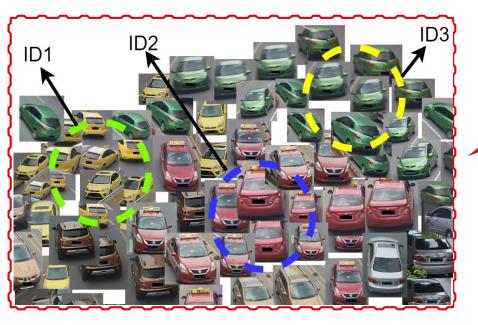
 $\mathcal{L}_{VeGAN} = \mathcal{L}_{cyc} + \beta \mathcal{L}_{ide} + \gamma \mathcal{L}_{con}$ $\beta = 5, \gamma = 2; \text{ learning rate} = 0.0002; \text{ training 6 epochs}$

• DUPL learning framework

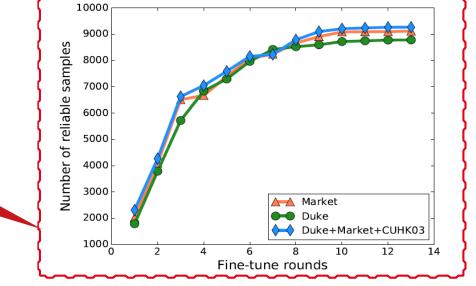
Modified from ResNet-50

batch size =16; learning rate = 0.001; training 13 epochs

Evaluation

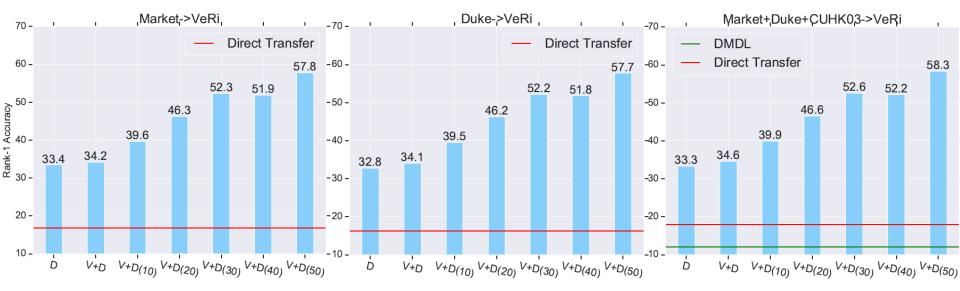


A small crop of vehicle clustering results for visualization



More reliable samples are be selected to fine-tune the CNN model

Evaluation



e.g. V means VeGAN and D means DUPL

- Training with more samples in source domain did not improve performance
- Less diversified training samples in multiple datasets
- Learning domain invariant feature is very difficult

Evaluation

S->T	Market -> VeRi					Duke -> VeRi					Market+Duke+CUHK03 -> VeRi				
methods	rank-1	rank-5	rank-10	rank-20	mAP	rank-1	rank-5	rank-10	rank-20	mAP	rank-1	rank-5	rank-10	rank-20	mAP
UMDL [17]	_	_	_	_	_	_	_	-	_	_	12.1	25.1	33.4	56.9	3.2
DT	16.8	28.7	36.8	58.8	5.3	16.3	27.9	35.8	58.1	5.2	17.9	29.2	37.4	59.1	5.4
DUPL	33.4	48.2	56.2	65.3	9.9	32.8	48.1	56.1	65.2	9.7	33.3	48.1	56.1	65.2	9.8
VeGAN+DUPL	34.2	49.1	57.3	66.4	11.3	34.1	48.9	57.2	66.2	11.2	34.6	49.1	57.2	66.5	11.4
VeGAN+DUPL(10)	39.6	55.1	62.8	71.1	14.2	39.5	54.9	62.7	70.8	14.1	39.9	55.2	62.7	71.2	14.3
VeGAN+DUPL(20)	46.3	61.2	68.5	75.8	16.9	46.2	60.9	68.4	75.5	16.8	46.6	61.3	68.4	75.9	17.1
VeGAN+DUPL(30)	52.3	66.3	73.2	80.5	19.1	52.2	66.1	73.1	80.2	19.0	52.6	66.4	73.1	80.6	19.3
VeGAN+DUPL(40)	51.9	67.8	74.7	81.6	19.8	51.8	67.6	74.6	81.3	19.8	52.2	67.9	74.6	81.7	20.0
VeGAN+DUPL(50)	57.8	71.9	78.7	84.6	21.9	57.7	71.7	78.6	84.3	21.8	58.3	72.1	78.7	84.6	22.1

Improvement of +18.1% in rank-1 accuracy trained on Market

- > Using more IDs in target domain as training sample is always beneficial
- > At a higher cost of labeled expenses
- SOTA performance in unsupervised and semi-supervised setting

Conclusion

Contribution:

- Propose a novel transfer learning model <u>VeGAN</u> for image-image translation
- Implement a simple but effective form of distant domain adaptation method <u>DUPL</u>

Future work:

- Explore the DUPL method to handle multiple target domains
- Make model more robust to unknown target domain with litter training datasets

Shanghai Jiao Tong University